星期五, 七月 20, 2012

用gbm包实现随机梯度提升算法


中国有句老话:三个臭皮匠,顶个诸葛亮。这个说法至少在变形金刚中得到了体现,没有组合之前的大力神只是五个可以被柱子哥随手秒掉工地苦力。但组合之后却是威力大增。在机器学习领域也是如此,一堆能力一般的“弱学习器”也能组合成一个“强学习器”。前篇文章提到的随机森林就是一种组合学习的方法,本文要说的是另一类组合金刚:提升方法(Boosting)。提升方法是一大类集成分类学习的统称。它用不同的权重将基学习器进行线性组合,使表现优秀的学习器得到重用。在R语言中gbm包就是用来实现一般提升方法的扩展包。根据基学习器、损失函数和优化方法的不同,提升方法也有各种不同的形式。

自适应提升方法AdaBoost
它是一种传统而重要的Boost算法,在学习时为每一个样本赋上一个权重,初始时各样本权重一样。在每一步训练后,增加错误学习样本的权重,这使得某些样本的重要性凸显出来,在进行了N次迭代后,将会得到N个简单的学习器。最后将它们组合起来得到一个最终的模型。

梯度提升方法Gradient Boosting
梯度提升算法初看起来不是很好理解,但我们和线性回归加以类比就容易了。回忆一下线性回归是希望找到一组参数使得残差最小化。如果只用一次项来解释二次曲线一定会有大量残差留下来,此时就可以用二次项来继续解释残差,所以可在模型中加入这个二次项。

同样的,梯度提升是先根据初始模型计算伪残差,之后建立一个基学习器来解释伪残差,该基学习器是在梯度方向上减少残差。再将基学习器乘上权重系数(学习速率)和原来的模型进行线性组合形成新的模型。这样反复迭代就可以找到一个使损失函数的期望达到最小的模型。在训练基学习器时可以使用再抽样方法,此时就称之为随机梯度提升算法stochastic gradient boosting


在gbm包中,采用的是决策树作为基学习器,重要的参数设置如下:
  • 损失函数的形式(distribution)
  • 迭代次数(n.trees)
  • 学习速率(shrinkage)
  • 再抽样比率(bag.fraction)
  • 决策树的深度(interaction.depth)
损失函数的形式容易设定,分类问题一般选择bernoulli分布,而回归问题可以选择gaussian分布。学习速率方面,我们都知道步子迈得太大容易扯着,所以学习速率是越小越好,但是步子太小的话,步数就得增加,也就是训练的迭代次数需要加大才能使模型达到最优,这样训练所需时间和计算资源也相应加大了。gbm作者的经验法则是设置shrinkage参数在0.01-0.001之间,而n.trees参数在3000-10000之间。

下面我们用mlbench包中的数据集来看一下gbm包的使用。其中响应变量为diabetes,即病人的糖尿病诊断是阳性还是阴性。
# 加载包和数据
library(gbm)
data(PimaIndiansDiabetes2,package='mlbench')
# 将响应变量转为0-1格式
data <- PimaIndiansDiabetes2
data$diabetes <- as.numeric(data$diabetes)
data <- transform(data,diabetes=diabetes-1)
# 使用gbm函数建模
model <- gbm(diabetes~.,data=data,shrinkage=0.01,
             distribution='bernoulli',cv.folds=5,
             n.trees=3000,verbose=F)
# 用交叉检验确定最佳迭代次数
best.iter <- gbm.perf(model,method='cv')

# 观察各解释变量的重要程度
summary(model,best.iter)

# 变量的边际效应
plot.gbm(model,1,best.iter)

# 用caret包观察预测精度
library(caret)
data <- PimaIndiansDiabetes2
fitControl <- trainControl(method = "cv", number = 5,returnResamp = "all")
model2 <- train(diabetes~., data=data,method='gbm',distribution='bernoulli',trControl = fitControl,verbose=F,tuneGrid = data.frame(.n.trees=best.iter,.shrinkage=0.01,.interaction.depth=1))
model2

  Accuracy  Kappa  Accuracy SD  Kappa SD
  0.78      0.504  0.0357       0.0702
观察到gbm迭代到800次左右最优,得到的预测正确率为0.78,这个比随机森林的正确率还要略高一些。提升算法继承了单一决策树的优点,例如:能处理缺失数据,对于噪声数据不敏感,但又摒弃了它的缺点,使之能拟合复杂的非线性关系,精确度大为提高。通过控制迭代次数能控制过度拟合,计算速度快。但由于它是顺序计算的,所以不好进行分布式计算。


参考资料:
http://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
http://en.wikipedia.org/wiki/Gradient_boosting
http://www.cnblogs.com/LeftNotEasy/archive/2011/03/07/random-forest-and-gbdt.html

4 条评论:

  1. 老师你前一篇文章http://xccds1977.blogspot.hk/2011/09/caret_1976.html里的gbmGrid = expand.grid(.interaction.depth = c(1, 3),.n.trees = c(50, 100, 150, 200, 250, 300),.shrinkage = 0.1)这里设置的参数跟这篇里提到的经验法则“设置shrinkage参数在0.01-0.001之间,而n.trees参数在3000-10000”两者差距很大,请问这是什么情况?

    回复删除
    回复
    1. 之前的那个文章主要谈caret的,gbm在里面只是配角示范,现在这个文章谈到的经验法则是根据gbm包作者的文章提出来的,应该采用现在的参数。

      删除
  2. 请问每次对损失函数求梯度时是对样本求的梯度吗,这样每个样本都有一个梯度作为残差的近似值,是这样吗,谢谢!

    回复删除
    回复
    1. 没有,它是在函数空间里头找一个函数使整体残差在某个迭代中最小。

      删除